Chemistry Curriculum Map – Key Stage 4

Year 10

Autumn 1	Autumn 2	Spring 1	g 1 Spring 2		Summer 2	
SC8 Acids and Alkalis - Paper 1 In this unit we explore the nature of acidic and alkaline solutions, and investigate their most important reactions properties and uses.	SC9 Calculations involving Masses - Paper 1 and 2 This unit will help you to use relative atomic masses to calculate relative formula masses of elements and compounds, calculate the concentration of a solution and work out empirical and molecular formulae of compounds.	SC10-13 Electrolytic Processes / Metals / Reversible Reactions and Equilibria - Paper 1 This unit will help you learn more about reactivity, oxidation and reduction, the advantages of recycling, about the Haber process and what happens during electrolysis.	SC14-16: Quantitative analysis/ dynamic equilibria, calculations involving volumes of gases/ chemical and fuel cells This unit will help you to learn more about reaction pathways. SC15 covers fertiliser and the Haber process, and factors affecting equilibrium. SC16 looks at chemical cells and fuel cells.	Summer PPE Exams and revision	SC17-19 Groups in the Periodic Table. Rates of Reaction. Heat Energy Changes in Chemical Reactions. This unit introduces you to alkalis, halogens, displacement reactions and noble gases, rates of reaction and catalysts, exothermic and endothermic reactions and energy changes in reactions.	
Assessment:End of topic testSix mark question	AssessmentEnd of topic testSix mark question	 Assessment: End of topic test Six mark question 	Assessment:End of topic testSix mark question	Assessment: PPE's	Assessment:End of topic testSix mark question	
 Builds upon: From KS3: Solubility, solutes, solvents and solutions 	Builds upon:From KS3:How to represent elements and	Builds upon: From KS3:	 Builds upon: Conservation of mass 		 Build upon: Periodic table including groups and periods 	

 Common international hazard symbols The use of indicators to test the pH of solutions What happens during simple neutralisation reactions From KS4 SC5-7 Ionic and covalent bonding and properties Ionic formula 	 compounds using symbols How mass is conserved during changes of state and chemical reactions How to show chemical reactions using equations From KS4 SC3-4 and SC8: Balancing equations Using the periodic table Relative atomic mass 	 Oxidation and displacement reactions The reactivity series From KS4 SC4, SC5 and SC8: Anions and cations in ionic compounds Writing balanced chemical equations with state symbols How the elements are arranged in the periodic table 	 Reacting masses calculation Concentration calculations Moles calculations Dynamic equilibria Mr calculations Acids base reactions Electrolysis Redox and half equations 	 Electronic configuration Elements & compounds Reactivity of metals with water & acid Properties of metals word and symbol equations Observations Redox (for higher only) Particle model Enzyme activity relating to rates of reactions in biology
 Introduces: The ions in acids and alkalis and how their concentrations are linked to pH The reactions between acids and different types of bases Different indicators that can be used in titrations How soluble and insoluble salts can be prepared in the laboratory 	 Introduces: How to calculate relative formula masses of elements and compounds How to work out empirical and molecular formulae of compounds How to calculate the mass of reactants or products in a reaction How to calculate the concentration of a solution 	 Introduces: More about reactivity, oxidation and reduction How metals can be extracted The advantages of recycling metals The factors involved in a lifecycle assessment of a product 	 Introduces: Yield calculations including reason why yield is lower than actual Atom economy calculations Concentration calculations in mol/dm3 and g/dm3 Making a standard solution method 	 Introduces: Describe and explain reactivity of group 1 metals Reactions of group 1 with oxygen and water Physical trends of group 7 Describe and explain reactivity of group 7 Halogens are diatomic molecules Test for Cl2 gas Reactions of group 1 with group 7 including predictions based on position in periodic table

Balancing chemical equations	The Avogadro constant (H)	 What happens during electrolysis and electroplating Equilibria in chemical reactions The Haber process Half equations (H) Properties of transition metals Properties and uses of metals and their alloys 	 Titration calculations and recap method Molar volume of a gas calculations including Avogadro gas law Fertilisers and the Haber process including the specific conditions required and considering compromise Comparing lab and industry production of chemicals Factors affecting position of equilibrium including rate Chemical cells: Why do batteries go flat fuels cells pros and cons need to be able to compare the different types of cells 	 Reactions of halogens with hydrogen Observations from group 7 displacement reactions with explanations Devise an experiment to prove reactivity from displacement reactions Higher only – understand halogen displacement reactions are redox reactions and explain why Explain reactivity of noble gases, uses and trends in physical properties Describe and explain how reaction rates change over time Calculate rates of reactions (see below) Describe ways in which to investigate rates of reactions e.g. volume of gas formed, forming precipitate, colour change and mass change Describe and explain factors that affect rates of reaction using collision theory Draw and interpret rate graphs Describe what a catalyst is and how it works
			 need to be able to compare the different types of cells High equations (higher only) 	 Draw and interpret rate graphs Describe what a catalyst is and how it works Draw a reaction profile for a reaction with and without a catalyst, highlighting the activation energy

 endothermic or exothermic Knowing that breaking bonds is endothermic and making bonds is exothermic (BENDOMEXO) bond energy calculations from values provide 					 Describe endothermic and exothermic reactions and give examples Draw simple reaction profiles of endothermic and exothermic reactions Describe a method to determine if a reaction is endothermic or exothermic Knowing that breaking bonds is endothermic and making bonds is exothermic (BENDOMEXO) bond energy calculations from values provide
--	--	--	--	--	--

Year 11

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
SC 20-21	PPE's	SC25-26 Qualitative	PPE's	revision	
Fuels, Earth and	SC22-24 Hydrocarbons,	analysis: test for			
atmospheric science	Alcohols & carboxylic	ions, Bulk and			
	acid, Polymers	surface properties			
SC20 covers hydrocarbons,		of matter including			
fractional distillation of crude	This unit covers alkanes	nanoparticles			
oil, the alkane homologous	and alkenes and will look at	In this unit, you will			
series, complete and	ethanol production and	learn:			
Incomplete compustion, fuel	carboxylic acids.	How to identify			
and pollution. SC21 looks at		metal ions			
the earth's atmosphere.		the chemical tests			
		for various non-			
		metal ions and for			
		ammonia gas			
		about instrumental			
		methods of			
		analysis and their			
		advantages			
		 how to compare 			
		the physical			
		properties of			
		different materials			
		 what composite 			
		materials are			
		 how and why 			
		materials are			
		chosen for			
		particular uses			
		• about			
		nanoparticles and			
		their properties,			

		uses and possible risks		
 Assessment: End of topic test Six mark question Builds upon:	Assessment • PPE's Builds upon:	Assessment: End of topic test Six mark question Builds upon:	Assessment: PPE's •	
 Use of fractional distillation Fuels as a source of energy Acidity of non-metal oxides Impact of CO₂ on the atmosphere and human impacts Bonding of carbon atoms 	 Combustion of fuels Properties of polymers Definition of homologous series 	 Cations and anions including polyatomic ions Test for CO₂ Properties of ceramics, polymers, metals and composite materials 		
 Introduces: Definition of crude oil and natural gas and their use as fuels That the Above are non- renewable fossil fuels Definition of a hydrocarbon as a 	 Introduces: Alkanes are saturated hydrocarbons Alkanes: general, structural and molecular formula Alkenes are unsaturated hydrocarbons 	 Introduces: Method of how to carry out flame tests and explain each step Positive flame test results for metal cations 		

compound of hydrogen	Alkenes: general	• Theory of flame	
and carbon ONLY (this is	structural and molecular	nhotometery as a	
a 2 mark answer)	formula	improved	
Name the different	Description and	instrumental	
fractions of crude oil and	Obscription and oxamples of structural	mothod	
their uses	formulas how to draw	Mothod for	
Lifeli uses	isomers of compounds	Internou ion	
Describe and explain	Isomers of compounds	precipitation	
now a fractionation	Identify and state	method with	
column separates the	numbers of different	sodium nydroxide	
fractions of crude oil	types of bonds in	to identify metal	
Describe and explain the	alkanes and alkenes	cations and	
trends in physical	Combustion of alkanes	ammonium ion	
properties of the	and alkenes in terms of	including	
different fractions of	oxidation	precipitate colour	
crude oil.	Use of bromine water as	for positive results	
 Understand what is 	a test to distinguish	 Test for ammonia 	
meant by homologous	between alkanes and	using litmus paper	
series in terms of	alkenes.	and HCl	
alkanes	Addition reactions of	Test for	
 Be able to name and 	alkenes	carbonates using	
draw the first few	How to produce ethanol	HCl to produce CO ₂	
alkanes (including	through fermentation.	 Test for sulphates 	
molecular and display	Word and balanced	using HCl and	
formula)	equation for production	barium sulphate	
Recall the general	of ethanol.	• Test for halide ions	
formula for alkanes (see	Formula & names of	using silver nitrate	
below)	alcohols	and colours for	
• Describe and explain the	Alcohols as renewable	positive results	
trend in physical	fuels	Balanced and word	
properties of the alkanes	Equations for oxidation	equations for the	
• Describe and explain the	of alcohols to carboxylic	above reactions	
similar chemical	acids + water		
properties of alkanes			

٠	Word and balanced	٠	Functional group of	٠	lonic equations for		
	equations for both		carboxylic acids and		reactions (higher		
	complete and		naming		only)		
	incomplete combustion	٠	General & structural	•	Observations		
٠	Tests for the products of		formula of carboxylic		including		
	complete combustion		acids		precipitates and		
٠	The issues with the	•	Equations for reaction		colours		
	products of incomplete		between metals/ metal	•	Know what		
	combustion		compounds and		ceramics are, their		
٠	How sulphur dioxide is		carboxylic acids		properties and		
	formed from impurities	•	Addition polymerisation,		uses.		
	in fuels and its		covalent bonds between	•	Uses of different		
	environmental effects		carbon atoms in		plastics (though		
٠	How oxides of nitrogen		monomers		this has been		
	are formed from	•	Be able to draw		covered in		
	combustion and their		polymers from		previous topic)		
	environmental effects		monomers & identify	•	Explain what a		
٠	Use of catalytic		repeat units of a		composite		
	converters to reduce		polymer using structural		material is, give		
	pollutant emission from		formula (including		examples and list		
	combustion engines.		polyesters – see below)		properties.		
٠	Understand the supply	•	Naming and roles/	•	Be able to		
	and demand of		properties of synthetic		calculate the size		
	hydrocarbons		and naturally occurring		(surface area and		
٠	Describe and explain		polymers		volume) of a		
	cracking and its	•	Process of condensation		nanoparticle		
	importance		polymerisation between	•	Uses of		
٠	Alternative fuels for cars		an alcohol and		nanoparticles in		
	such as Hydrogen		carboxylic acid to form		e.g. suncream and		
	including advantages		esters + water		silver for		
	and disadvantages	•	Identify ester functional		antibacterial		
٠	Describe the early		group and ester linkages		purposes and any		
	atmosphere in terms of		in polyesters		-		

	gases present and where	•	Properties of synthetic		potential			
	they came from		polyesters	1	drawbacks.			
٠	Describe how the oceans	•	Identify advantages and	1				
	formed from the earth		disadvantages of	•				
	cooling.		synthetic polymers	1				
٠	Name different	٠	Identify methods for	1				
	greenhouse gases.		disposing & recycling	l				
٠	Evidence for the increase		plastics including related	1				
	in oxygen in the early		issues	l				
	atmosphere	•	Difference between	l				
٠	Describe the modern		recycling and reusing	1				
	atmosphere and reasons			l				
	for the change in	•		1				
	atmospheric gas			1				
	composition.			l				
٠	Describe the greenhouse			l				
	effect including being			l				
	able to draw/ interpret			l				
	the diagram			l				
٠	Test for oxygen using a			l				
	smouldering splint			l				
٠	Evaluate the evidence			l				
	for climate change			l				
	including ice core			l				
	samples and sea level			1				
	rise data.			l				
٠	Understand the effect of			l				
	climate change and how			l				
	these can be limited.			i				
		1		1		1	1	